Skip to main content

New Drug Approvals 2012 - Pt. X - Avanafil (StendraTM)




ATC code: G04BE (partial)
Wikipedia: Avanafil


On April 27th, the FDA approved Avanafil (tradename: Stendra; Research Code: TA-1790), a phosphodiesterase 5 (PDE5) inhibitor for the treatment of erectile dysfunction (ED). ED is a sexual dysfunction characterized by the inability to produce an erection of the penis. The physiologic mechanism of penile erection involves the release of nitric oxide in the corpus cavernosum during sexual stimulation, which in turn activates the enzyme guanylate cyclase, resulting in increased levels of cyclic guanosine monophosphate (cGMP). cGMP produces relaxation of smooth muscle tissues, which in the corpus cavernosum results in vasodilation and increased blood flow. Avanafil (PubChem: CID9869929, ChemSpider: 8045620) enhances the relaxant effects of cGMP by selectively inhibiting PDE5 (ChEMBL: CHEMBL1827; Uniprot: O76074), an enzyme responsible for the degradation of cGMP.

Other PDE5 inhibitors are already available on the market and these include Sildenafil (approved in 1998; tradename: Viagra, Revatio; ChEMBL: CHEMBL192), Tadalafil (approved in 2003; tradename: Cialis; ChEMBL: CHEMBL779) and Vardenafil (approved in 2003; tradename: Levitra; ChEMBL: CHEMBL1520). These other PDE5 inhibitors are also approved for the treatment of pulmonary arterial hypertension (PAH).

PDE5 is an 875 amino acid-long enzyme (EC=3.1.4.35), belonging to the cyclic nucleotide phosphodiesterase family (PFAM: PF00233).

>PDE5A_HUMAN cGMP-specific 3',5'-cyclic phosphodiesterase
MERAGPSFGQQRQQQQPQQQKQQQRDQDSVEAWLDDHWDFTFSYFVRKATREMVNAWFAE
RVHTIPVCKEGIRGHTESCSCPLQQSPRADNSAPGTPTRKISASEFDRPLRPIVVKDSEG
TVSFLSDSEKKEQMPLTPPRFDHDEGDQCSRLLELVKDISSHLDVTALCHKIFLHIHGLI
SADRYSLFLVCEDSSNDKFLISRLFDVAEGSTLEEVSNNCIRLEWNKGIVGHVAALGEPL
NIKDAYEDPRFNAEVDQITGYKTQSILCMPIKNHREEVVGVAQAINKKSGNGGTFTEKDE
KDFAAYLAFCGIVLHNAQLYETSLLENKRNQVLLDLASLIFEEQQSLEVILKKIAATIIS
FMQVQKCTIFIVDEDCSDSFSSVFHMECEELEKSSDTLTREHDANKINYMYAQYVKNTME
PLNIPDVSKDKRFPWTTENTGNVNQQCIRSLLCTPIKNGKKNKVIGVCQLVNKMEENTGK
VKPFNRNDEQFLEAFVIFCGLGIQNTQMYEAVERAMAKQMVTLEVLSYHASAAEEETREL
QSLAAAVVPSAQTLKITDFSFSDFELSDLETALCTIRMFTDLNLVQNFQMKHEVLCRWIL
SVKKNYRKNVAYHNWRHAFNTAQCMFAALKAGKIQNKLTDLEILALLIAALSHDLDHRGV
NNSYIQRSEHPLAQLYCHSIMEHHHFDQCLMILNSPGNQILSGLSIEEYKTTLKIIKQAI
LATDLALYIKRRGEFFELIRKNQFNLEDPHQKELFLAMLMTACDLSAITKPWPIQQRIAE
LVATEFFDQGDRERKELNIEPTDLMNREKKNKIPSMQVGFIDAICLQLYEALTHVSEDCF
PLLDGCRKNRQKWQALAEQQEKMLINGESGQAKRN

Several crystal structures of PDE5 are now available. The catalytic domain of human PDE5 complexed with sildenafil is shown below (PDBe:1tbf)





Preclinical studies have shown that Avanafil strongly inhibits PDE5 (half maximal inhibitory concentration = 5.2 nM) in a competitive manner and is 100-fold more potent for PDE5 than PDE6, which is found in the retina and is responsible for phototransduction. Also, Avanafil has shown higher selectivity (120-fold) against PDE6 than Sildenafil (16-fold) and Vardenafil (21-fold), and high selectivity (>10 000-fold) against PDE1 compared with Sildenafil (380-fold) and Vardenafil (1000-fold). 

Avanafil has also been reported to be a faster-acting drug than Sildenafil, with an onset of action as little as 15 minutes as opposed to 30 minutes for the other drugs.


Avanafil is a synthetic small molecule, with one chiral center. Avanafil has a molecular weight of 483.95 Da, an ALogP of 2.16, 3 hydrogen bond donors and 9 hydrogen bond acceptors and thus fully rule-of-five compliant. (IUPAC: 4-[(3-chloro-4-methoxyphenyl)methylamino]-2-[(2S)-2-(hydroxymethyl)-pyrrolidin-1-yl]-N-(pyrimidin-2-ylmethyl)pyrimidine-5-carboxamide; Canonical Smiles: COC1=C(C=C(C=C1)CNC2=NC(=NC=C2C(=O)NCC3=NC=CC=N3)N4CCC[C@H]4CO)Cl; InChI: InChI=1S/C23H26ClN7O3/c1-34-19-6-5-15(10-18(19)24)11-27-21-17(22(33)28-
13-20-25-7-3-8-26-20)12-29-23(30-21)31-9-2-4-16(31)14-32/h3,5-8,10,12,
16,32H,2,4,9,11,13-14H2,1H3,(H,28,33)(H,27,29,30)/t16-/m0/s1)

The recommended starting dose of Avanafil is 100 mg and should be taken orally as needed approximately 30 minutes before sexual activity. Depending on individual efficacy and tolerability, the dose can be varied to a maximum dose of 200 mg or decreased to 50 mg. The lowest dose that  provides efficacy should be used. The maximum recommended dosing frequency is once per day.

Avanafil is rapidly absorbed after oral administration, with a median Tmax of 30 to 45 minutes in the fasted state and 1.12 to 1.25 hours when taken with a high fat meal. Avanafil is approximately 99% bound to plasma proteins and has been found to not accumulate in plasma. It is predominantely cleared by hepatic metabolism, mainly by CYP3A4 enzyme and to a minor extent by CYP2c isoform. The plasma concentrations of the major metabolites, M4 and M16, are approximately 23% and 29% of that of the parent compound, respectively. The M4 metabolite accounts for approximately 4% of the pharmacologic activity of Avanafil, with an in vitro inhibitory potency for PDE5 of 18% of that of Avanafil. The M16 metabolite has been found inactive against PDE5. After oral administration, Avanafil is excreted as metabolites mainly in the feces (approximately 62% of administrated dose) and to a lesser extent in the urine (approximately 21% of the administrated dose). Avanafil has a terminal elimination  half-life (t1/2) of approximately 5 hours, which is comparable to that of Sildenafil (3-4h) and Vardenafil (4-5h), but very short relative to the very long half-life of Tadalafil (17.5h).

The full prescribing information of Avanafil can be found here.

The license holder is Vivus, Inc.

Comments

Popular posts from this blog

ChEMBL 34 is out!

We are delighted to announce the release of ChEMBL 34, which includes a full update to drug and clinical candidate drug data. This version of the database, prepared on 28/03/2024 contains:         2,431,025 compounds (of which 2,409,270 have mol files)         3,106,257 compound records (non-unique compounds)         20,772,701 activities         1,644,390 assays         15,598 targets         89,892 documents Data can be downloaded from the ChEMBL FTP site:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/ Please see ChEMBL_34 release notes for full details of all changes in this release:  https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/chembl_34/chembl_34_release_notes.txt New Data Sources European Medicines Agency (src_id = 66): European Medicines Agency's data correspond to EMA drugs prior to 20 January 2023 (excluding vaccines). 71 out of the 882 newly added EMA drugs are only authorised by EMA, rather than from other regulatory bodies e.g.

New SureChEMBL announcement

(Generated with DALL-E 3 ∙ 30 October 2023 at 1:48 pm) We have some very exciting news to report: the new SureChEMBL is now available! Hooray! What is SureChEMBL, you may ask. Good question! In our portfolio of chemical biology services, alongside our established database of bioactivity data for drug-like molecules ChEMBL , our dictionary of annotated small molecule entities ChEBI , and our compound cross-referencing system UniChem , we also deliver a database of annotated patents! Almost 10 years ago , EMBL-EBI acquired the SureChem system of chemically annotated patents and made this freely accessible in the public domain as SureChEMBL. Since then, our team has continued to maintain and deliver SureChEMBL. However, this has become increasingly challenging due to the complexities of the underlying codebase. We were awarded a Wellcome Trust grant in 2021 to completely overhaul SureChEMBL, with a new UI, backend infrastructure, and new f

Accessing SureChEMBL data in bulk

It is the peak of the summer (at least in this hemisphere) and many of our readers/users will be on holiday, perhaps on an island enjoying the sea. Luckily, for the rest of us there is still the 'sea' of SureChEMBL data that awaits to be enjoyed and explored for hidden 'treasures' (let me know if I pushed this analogy too far). See here and  here for a reminder of SureChEMBL is and what it does.  This wealth of (big) data can be accessed via the SureChEMBL interface , where users can submit quite sophisticated and granular queries by combining: i) Lucene fields against full-text and bibliographic metadata and ii) advanced structure query features against the annotated compound corpus. Examples of such queries will be the topic of a future post. Once the search results are back, users can browse through and export the chemistry from the patent(s) of interest. In addition to this functionality, we've been receiving user requests for  local (behind the

A python client for accessing ChEMBL web services

Motivation The CheMBL Web Services provide simple reliable programmatic access to the data stored in ChEMBL database. RESTful API approaches are quite easy to master in most languages but still require writing a few lines of code. Additionally, it can be a challenging task to write a nontrivial application using REST without any examples. These factors were the motivation for us to write a small client library for accessing web services from Python. Why Python? We choose this language because Python has become extremely popular (and still growing in use) in scientific applications; there are several Open Source chemical toolkits available in this language, and so the wealth of ChEMBL resources and functionality of those toolkits can be easily combined. Moreover, Python is a very web-friendly language and we wanted to show how easy complex resource acquisition can be expressed in Python. Reinventing the wheel? There are already some libraries providing access to ChEMBL d

New Drug Approvals - Pt. XVII - Telavancin (Vibativ)

The latest new drug approval, on 11th September 2009 was Telavancin - which was approved for the treatment of adults with complicated skin and skin structure infections (cSSSI) caused by susceptible Gram-positive bacteria , including Staphylococcus aureus , both methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Telavancin is also active against Streptococcus pyogenes , Streptococcus agalactiae , Streptococcus anginosus group (includes S. anginosus, S. intermedius and S. constellatus ) and Enterococcus faecalis (vancomycin susceptible isolates only). Telavancin is a semisynthetic derivative of Vancomycin. Vancomycin itself is a natural product drug, isolated originally from soil samples in Borneo, and is produced by controlled fermentation of Amycolatopsis orientalis - a member of the Actinobacteria . Telavancin has a dual mechanism of action, firstly it inhibits bacterial cell wall synthesis by interfering with the polymerization and cross-linking of peptid